Categories: NewsEducationOpinion

A math teacher’s plea: Let’s keep pi irrational

<h3>Computers have helped mathematical research accelerate in multiple directions and increased the presence of <a href&equals;"https&colon;&sol;&sol;www&period;cnet&period;com&sol;how-to&sol;count-steps-with-apple-watch&sol;">mathematics in everyday life<&sol;a>&period;<&sol;h3>&NewLine;<p>The role of technology in teaching and learning mathematics is increasingly on my mind as a math instructor who sees new students arrive at Simon Fraser University &lpar;SFU&rpar; every year&period; Both at SFU&comma; and <a href&equals;"https&colon;&sol;&sol;www&period;sfu&period;ca&sol;mathcatcher&period;html">when I visit<&sol;a> <a href&equals;"https&colon;&sol;&sol;www&period;google&period;com&sol;maps&sol;d&sol;viewer&quest;ll&equals;15&period;290666696045552&percnt;2C-104&period;17303904999994&amp&semi;z&equals;3&amp&semi;mid&equals;12IkRTShtyG7A6MMaoq7MJL9GU7YSVgnv">Canadian math classrooms as a guest speaker<&sol;a>&comma; I look out into rooms filled with vibrant young people surrounded by calculators&comma; computers and smart phones&period;<&sol;p>&NewLine;<p>And that’s OK&period; Like many mathematicians&comma; I have not pushed back against the new technological winds ushered forward by modern times&period; But such technology should enhance and extend&comma; rather than replace&comma; the ability to think mathematically&period;<&sol;p>&NewLine;<h2>Adieu geometry&quest;<&sol;h2>&NewLine;<p>Recently&comma; I met with a young person who was interested in math and computing&comma; but not certain which direction he would like to go in&period; I offered the following problem used by the University of Oxford to interview undergraduate mathematics candidates&colon;<&sol;p>&NewLine;<blockquote>&NewLine;<p>&OpenCurlyDoubleQuote;<a href&equals;"https&colon;&sol;&sol;www&period;theguardian&period;com&sol;education&sol;2016&sol;oct&sol;11&sol;oxford-university-releases-sample-interview-questions">Imagine a ladder leaning against a vertical wall with its feet on the ground<&sol;a>&period; The middle rung of the ladder has been painted a different colour on the side&comma; so that we can see it when we look at the ladder from the side on&period; What shape does that middle rung trace out as the ladder falls to the floor&quest;”<&sol;p>&NewLine;<&sol;blockquote>&NewLine;<p>One way to approach the ladder puzzle is to use&comma; in a relatively simple way&comma; Euclidean geometry&comma; to show that the answer is a quarter of a circle&period; See below&colon;<&sol;p>&NewLine;<figure class&equals;"align-center "><img src&equals;"https&colon;&sol;&sol;images&period;theconversation&period;com&sol;files&sol;310688&sol;original&sol;file-20200117-118352-xdkrno&period;png&quest;ixlib&equals;rb-1&period;1&period;0&amp&semi;q&equals;45&amp&semi;auto&equals;format&amp&semi;w&equals;754&amp&semi;fit&equals;clip" sizes&equals;"&lpar;min-width&colon; 1466px&rpar; 754px&comma; &lpar;max-width&colon; 599px&rpar; 100vw&comma; &lpar;min-width&colon; 600px&rpar; 600px&comma; 237px" srcset&equals;"https&colon;&sol;&sol;images&period;theconversation&period;com&sol;files&sol;310688&sol;original&sol;file-20200117-118352-xdkrno&period;png&quest;ixlib&equals;rb-1&period;1&period;0&amp&semi;q&equals;45&amp&semi;auto&equals;format&amp&semi;w&equals;600&amp&semi;h&equals;468&amp&semi;fit&equals;crop&amp&semi;dpr&equals;1 600w&comma; https&colon;&sol;&sol;images&period;theconversation&period;com&sol;files&sol;310688&sol;original&sol;file-20200117-118352-xdkrno&period;png&quest;ixlib&equals;rb-1&period;1&period;0&amp&semi;q&equals;30&amp&semi;auto&equals;format&amp&semi;w&equals;600&amp&semi;h&equals;468&amp&semi;fit&equals;crop&amp&semi;dpr&equals;2 1200w&comma; https&colon;&sol;&sol;images&period;theconversation&period;com&sol;files&sol;310688&sol;original&sol;file-20200117-118352-xdkrno&period;png&quest;ixlib&equals;rb-1&period;1&period;0&amp&semi;q&equals;15&amp&semi;auto&equals;format&amp&semi;w&equals;600&amp&semi;h&equals;468&amp&semi;fit&equals;crop&amp&semi;dpr&equals;3 1800w&comma; https&colon;&sol;&sol;images&period;theconversation&period;com&sol;files&sol;310688&sol;original&sol;file-20200117-118352-xdkrno&period;png&quest;ixlib&equals;rb-1&period;1&period;0&amp&semi;q&equals;45&amp&semi;auto&equals;format&amp&semi;w&equals;754&amp&semi;h&equals;588&amp&semi;fit&equals;crop&amp&semi;dpr&equals;1 754w&comma; https&colon;&sol;&sol;images&period;theconversation&period;com&sol;files&sol;310688&sol;original&sol;file-20200117-118352-xdkrno&period;png&quest;ixlib&equals;rb-1&period;1&period;0&amp&semi;q&equals;30&amp&semi;auto&equals;format&amp&semi;w&equals;754&amp&semi;h&equals;588&amp&semi;fit&equals;crop&amp&semi;dpr&equals;2 1508w&comma; https&colon;&sol;&sol;images&period;theconversation&period;com&sol;files&sol;310688&sol;original&sol;file-20200117-118352-xdkrno&period;png&quest;ixlib&equals;rb-1&period;1&period;0&amp&semi;q&equals;15&amp&semi;auto&equals;format&amp&semi;w&equals;754&amp&semi;h&equals;588&amp&semi;fit&equals;crop&amp&semi;dpr&equals;3 2262w" alt&equals;"" &sol;><figcaption><span class&equals;"caption">Euclidean geometry can be used to solve the problem given to University of Oxford’s undergraduate mathematics candidates&period;<&sol;span> <span class&equals;"attribution"><span class&equals;"source">&lpar;Veselin&rpar;<&sol;span>&comma; <span class&equals;"license">Author provided<&sol;span><&sol;span><&sol;figcaption><&sol;figure>&NewLine;<p>Rather than draw on geometrical properties&comma; the young man used the <a href&equals;"https&colon;&sol;&sol;www&period;python&period;org&sol;">Python programming language<&sol;a> to animate the problem and find the required shape&period; He had learned Python on his own earlier that summer&period; When I asked him about congruent triangles&comma; the young man looked perplexed&period;<&sol;p>&NewLine;<p>Situations like this make me fear that if not used with due care in classrooms&comma; technology may deprive students of fully developing their numeracy and spatial skills&period;<&sol;p>&NewLine;<h2>Unreachable problems<&sol;h2>&NewLine;<p>What mathematicians call &OpenCurlyDoubleQuote;the computationally assisted approach” has enabled researchers to explore and solve mathematical problems that would otherwise be unreachable&period; The computer-assisted proof of the celebrated Four Colour Theorem comes to mind&period;<&sol;p>&NewLine;<figure><iframe src&equals;"https&colon;&sol;&sol;www&period;youtube&period;com&sol;embed&sol;ANY7X-&lowbar;wpNs&quest;wmode&equals;transparent&amp&semi;start&equals;0" width&equals;"440" height&equals;"260" frameborder&equals;"0" allowfullscreen&equals;"allowfullscreen" data-mce-fragment&equals;"1"><&sol;iframe><figcaption><span class&equals;"caption">The four colour theorem&period;<&sol;span><&sol;figcaption><&sol;figure>&NewLine;<p>But some mathematical questions have demonstrated limitations of existing technology — and the fact that some solutions are dependent largely on human intuition&comma; inspiration and intelligence&period; One <a href&equals;"https&colon;&sol;&sol;blogs&period;scientificamerican&period;com&sol;roots-of-unity&sol;moores-law-and-ramsey-numbers&sol;">such problem<&sol;a>&comma; known as the party problem &lpar;yes&comma; as in a dinner party&rpar;&comma; is finding the number of guests that would guarantee that one always can find six people who are mutual friends or six people who are mutual strangers&period;<&sol;p>&NewLine;<p>In mathematical terms&comma; this problem is about finding what’s called &OpenCurlyDoubleQuote;the Ramsey number R&lpar;6&comma;6&rpar;&comma;” related to a branch of mathematics that studies <a href&equals;"https&colon;&sol;&sol;doi&period;org&sol;10&period;1007&sol;s00283-014-9508-7">what conditions must exist for a given pattern to appear<&sol;a>&period;<&sol;p>&NewLine;<p>Believe it or not&comma; since 1930 mathematicians have know that R&lpar;6&comma;6&rpar; exists&semi; since 1994 we have known this number is between 102 and 165&period;<&sol;p>&NewLine;<p>No progress since&excl;<&sol;p>&NewLine;<h2>Experimental mathematics<&sol;h2>&NewLine;<p>Celebrated Canadian mathematicians and brothers <a href&equals;"http&colon;&sol;&sol;www&period;cecm&period;sfu&period;ca&sol;&percnt;7Epborwein&sol;">Peter Borwein<&sol;a> and <a href&equals;"https&colon;&sol;&sol;www&period;carma&period;newcastle&period;edu&period;au&sol;resources&sol;jon&sol;">Jonathan Borwein<&sol;a> — who established the <a href&equals;"http&colon;&sol;&sol;www&period;cecm&period;sfu&period;ca&sol;">Centre for Experimental and Constructive Mathematics<&sol;a> in 1993 at SFU — were among research pioneers who contributed to the process of aligning mathematics and new technologies&period;<&sol;p>&NewLine;<p>As suggested by Jonathan Borwein and <a href&equals;"https&colon;&sol;&sol;www&period;davidhbailey&period;com&sol;">mathematician David H&period; Bailey<&sol;a>&comma; <a href&equals;"https&colon;&sol;&sol;www&period;ems-ph&period;org&sol;books&sol;show&lowbar;abstract&period;php&quest;proj&lowbar;nr&equals;207&amp&semi;vol&equals;1&amp&semi;rank&equals;2">experimental mathematics uses &OpenCurlyDoubleQuote;a computationally assisted approach to mathematical research&period;”<&sol;a> They meant experimental math is about using computers to boost processes that have been the basic elements of mathematical research for centuries&colon;<&sol;p>&NewLine;<ol>&NewLine;<li>Gaining insight and intuition&semi;<&sol;li>&NewLine;<li>Visualizing mathematical principles&semi;<&sol;li>&NewLine;<li>Discovering new relationships&semi;<&sol;li>&NewLine;<li>Testing and especially falsifying conjectures&semi;<&sol;li>&NewLine;<li>Exploring a possible result to make an evidence-based decision if the possible result merits formal proof&semi;<&sol;li>&NewLine;<li>Suggesting approaches for formal proof&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>They also argued computers could help with performing lengthy mathematical derivations and confirming analytically derived results&period;<&sol;p>&NewLine;<p>Their point was that computers enable researchers to push their explorations into new or different dimensions&period;<&sol;p>&NewLine;<h2>New exploration<&sol;h2>&NewLine;<p>Bailey and Borwein’s ideas may be used to help describe contemporary and future ways of teaching mathematics to help students look at problems in new ways&period;<&sol;p>&NewLine;<figure class&equals;"align-right "><img src&equals;"https&colon;&sol;&sol;images&period;theconversation&period;com&sol;files&sol;311745&sol;original&sol;file-20200124-81357-osgbxm&period;jpg&quest;ixlib&equals;rb-1&period;1&period;0&amp&semi;q&equals;45&amp&semi;auto&equals;format&amp&semi;w&equals;237&amp&semi;fit&equals;clip" sizes&equals;"&lpar;min-width&colon; 1466px&rpar; 754px&comma; &lpar;max-width&colon; 599px&rpar; 100vw&comma; &lpar;min-width&colon; 600px&rpar; 600px&comma; 237px" srcset&equals;"https&colon;&sol;&sol;images&period;theconversation&period;com&sol;files&sol;311745&sol;original&sol;file-20200124-81357-osgbxm&period;jpg&quest;ixlib&equals;rb-1&period;1&period;0&amp&semi;q&equals;45&amp&semi;auto&equals;format&amp&semi;w&equals;600&amp&semi;h&equals;662&amp&semi;fit&equals;crop&amp&semi;dpr&equals;1 600w&comma; https&colon;&sol;&sol;images&period;theconversation&period;com&sol;files&sol;311745&sol;original&sol;file-20200124-81357-osgbxm&period;jpg&quest;ixlib&equals;rb-1&period;1&period;0&amp&semi;q&equals;30&amp&semi;auto&equals;format&amp&semi;w&equals;600&amp&semi;h&equals;662&amp&semi;fit&equals;crop&amp&semi;dpr&equals;2 1200w&comma; https&colon;&sol;&sol;images&period;theconversation&period;com&sol;files&sol;311745&sol;original&sol;file-20200124-81357-osgbxm&period;jpg&quest;ixlib&equals;rb-1&period;1&period;0&amp&semi;q&equals;15&amp&semi;auto&equals;format&amp&semi;w&equals;600&amp&semi;h&equals;662&amp&semi;fit&equals;crop&amp&semi;dpr&equals;3 1800w&comma; https&colon;&sol;&sol;images&period;theconversation&period;com&sol;files&sol;311745&sol;original&sol;file-20200124-81357-osgbxm&period;jpg&quest;ixlib&equals;rb-1&period;1&period;0&amp&semi;q&equals;45&amp&semi;auto&equals;format&amp&semi;w&equals;754&amp&semi;h&equals;832&amp&semi;fit&equals;crop&amp&semi;dpr&equals;1 754w&comma; https&colon;&sol;&sol;images&period;theconversation&period;com&sol;files&sol;311745&sol;original&sol;file-20200124-81357-osgbxm&period;jpg&quest;ixlib&equals;rb-1&period;1&period;0&amp&semi;q&equals;30&amp&semi;auto&equals;format&amp&semi;w&equals;754&amp&semi;h&equals;832&amp&semi;fit&equals;crop&amp&semi;dpr&equals;2 1508w&comma; https&colon;&sol;&sol;images&period;theconversation&period;com&sol;files&sol;311745&sol;original&sol;file-20200124-81357-osgbxm&period;jpg&quest;ixlib&equals;rb-1&period;1&period;0&amp&semi;q&equals;15&amp&semi;auto&equals;format&amp&semi;w&equals;754&amp&semi;h&equals;832&amp&semi;fit&equals;crop&amp&semi;dpr&equals;3 2262w" alt&equals;"" &sol;><figcaption><span class&equals;"caption">Mathematician and philosopher René Descartes resolved &OpenCurlyQuote;never to accept anything for true which I did not clearly know to be such&period;’<&sol;span><&sol;figcaption><&sol;figure>&NewLine;<p>In my geometry-Python anecdote&comma; I might have challenged the student by observing that the shape obtained by the Python-generated animation only looks like a quarter circle &lpar;this may refer to points 1-3 and 5 in the Bailey-Borwein definition&rpar; and that a complete answer would require an analytically derived result &lpar;point 6&rpar;&period;<&sol;p>&NewLine;<p>To justify the challenge&comma; I might also choose to show the student a seemingly mind-bending visual proof&comma; such as the <a href&equals;"http&colon;&sol;&sol;people&period;math&period;sfu&period;ca&sol;&percnt;7Evjungic&sol;CLF&sol;64-equals-65&period;html">animation that &OpenCurlyDoubleQuote;shows” 64 &equals; 65<&sol;a>&period;<&sol;p>&NewLine;<p>I might conclude by quoting <a href&equals;"https&colon;&sol;&sol;plato&period;stanford&period;edu&sol;entries&sol;descartes&sol;">17th-century mathematician and philosopher René Descartes<&sol;a>&comma; who resolved&colon;<&sol;p>&NewLine;<blockquote>&NewLine;<p>&OpenCurlyDoubleQuote;… <a href&equals;"http&colon;&sol;&sol;www&period;gutenberg&period;org&sol;files&sol;59&sol;59-h&sol;59-h&period;htm">never to accept anything for true which I did not clearly know to be such<&sol;a>&semi; that is to say&comma; carefully … avoid … prejudice&comma; and to comprise nothing more in my judgment than what was presented to my mind so clearly and distinctly as to exclude all ground of doubt&period;”<&sol;p>&NewLine;<&sol;blockquote>&NewLine;<h2>Experimental mathematics curricula<&sol;h2>&NewLine;<p>Researchers and educators have developed curricula specializing in teaching children and youth how to use computers to enhance and extend their own mathematical learning and thinking in Canadian high schools&period; For example&comma; <a href&equals;"https&colon;&sol;&sol;mast&period;queensu&period;ca&sol;&percnt;7Emath9-12&sol;">The RabbitMath Curriculum Project<&sol;a>&comma; led by mathematician Peter Taylor of Queen’s University and Chris Suurtamm of the University of Ottawa&comma; or the <a href&equals;"https&colon;&sol;&sol;callysto&period;ca&sol;">Callysto Project<&sol;a>&comma; championed by the <a href&equals;"https&colon;&sol;&sol;www&period;pims&period;math&period;ca&sol;">Pacific Institute for Mathematical Sciences<&sol;a> &lpar;PIMS&rpar; and the Alberta-based not-for-profit organization <a href&equals;"https&colon;&sol;&sol;www&period;cybera&period;ca&sol;">Cybera<&sol;a>&period;<&sol;p>&NewLine;<p>The challenge for the mathematics teaching community will be about increasingly creating and sustaining a healthy balance in our classrooms between the power of rigorous&comma; formal mathematics and the power of computing&period;<&sol;p>&NewLine;<p>When I think of the future&comma; I am concerned that the rigorous and formal parts of mathematics could fade away and be left outside students’ scope&period;<&sol;p>&NewLine;<p>For a student in the not-too-distant future&comma; would&comma; for example&comma; <a href&equals;"https&colon;&sol;&sol;www&period;scientificamerican&period;com&sol;article&sol;what-is-pi-and-how-did-it-originate&sol;">the number pi<&sol;a> become a rational number — meaning&comma; would it be equal to its approximation generated by the most powerful computer at the moment&quest;<&sol;p>&NewLine;<p>Most importantly&comma; what will all this mean to students and their learning of mathematics as an instrument to better navigate the world around them&quest;<&excl;-- Below is The Conversation's page counter tag&period; Please DO NOT REMOVE&period; --><img style&equals;"border&colon; none &excl;important&semi; box-shadow&colon; none &excl;important&semi; margin&colon; 0 &excl;important&semi; max-height&colon; 1px &excl;important&semi; max-width&colon; 1px &excl;important&semi; min-height&colon; 1px &excl;important&semi; min-width&colon; 1px &excl;important&semi; opacity&colon; 0 &excl;important&semi; outline&colon; none &excl;important&semi; padding&colon; 0 &excl;important&semi; text-shadow&colon; none &excl;important&semi;" src&equals;"https&colon;&sol;&sol;counter&period;theconversation&period;com&sol;content&sol;127159&sol;count&period;gif&quest;distributor&equals;republish-lightbox-basic" alt&equals;"The Conversation" width&equals;"1" height&equals;"1" &sol;><&excl;-- End of code&period; If you don't see any code above&comma; please get new code from the Advanced tab after you click the republish button&period; The page counter does not collect any personal data&period; More info&colon; http&colon;&sol;&sol;theconversation&period;com&sol;republishing-guidelines --><&sol;p>&NewLine;<h6><a href&equals;"https&colon;&sol;&sol;theconversation&period;com&sol;profiles&sol;veselin-jungic-497947">Veselin Jungic<&sol;a>&comma; Professor&comma; Department of Mathematics&comma; <em><a href&equals;"http&colon;&sol;&sol;theconversation&period;com&sol;institutions&sol;simon-fraser-university-1282">Simon Fraser University&period;<&sol;a><&sol;em>This article is republished from <a href&equals;"http&colon;&sol;&sol;theconversation&period;com">The Conversation<&sol;a> under a Creative Commons license&period; Read the <a href&equals;"https&colon;&sol;&sol;theconversation&period;com&sol;a-math-teachers-plea-lets-keep-pi-irrational-127159">original article<&sol;a>&period;<&sol;h6>&NewLine;

Explore our latest issue...
School News

School News is not affiliated with any government agency, body or political party. We are an independently owned, family-operated magazine.

Recent Posts

Are you teaching out of field? Your input is needed

A study investigating the realities of out-of-field teachers is seeking participants for groundbreaking research.

7 days ago

New resources to support media literacy teaching

The resources are designed to support teachers to make sure all students are engaged in…

7 days ago

Understanding tic disorders: What every school should know

Tic disorders are far more common than many people realise, and are often misrepresented in…

7 days ago

The modern library: More than a book storeroom

The school library has long been a place of discovery, reflection, and learning. But as…

7 days ago

Build a strong school community to prevent bullying

Is your school an inclusive community that empowers students to recognise bullying and to stand…

7 days ago

Government school enrolments at 10-year low

Performance indicators for the education and VET sectors have just been released with some encouraging…

2 weeks ago

This website uses cookies.